头部背景图片

Methods for Troubleshooting Progressive Screw Pumps

2025-12-05
 

Regarding faults in screw pumps, we at Anhui Shengshi Datang have some effective solutions.

First, ensure that no foreign objects enter the pump body.

If solid debris enters the pump body, it can damage the rubber stator of the progressive screw pump. Therefore, it is crucial to prevent debris from entering the pump chamber. Some systems install a grinder before the pump, while others use a screen or filter to block debris from entering the pump. Screens should be cleaned promptly to prevent clogging.

 

Second, avoid operating the pump without material.

The progressive screw pump absolutely must not run dry. If dry running occurs, the rubber stator can instantly overheat due to dry friction and burn out. Therefore, having a properly functioning grinder and clear screens are essential conditions for the normal operation of the pump. For this reason, some pumps are equipped with a dry-run protection device. When material supply is interrupted, the self-priming capability of the pump creates a vacuum in the chamber, which triggers the vacuum device to stop the pump.

 

Third, maintain a constant outlet pressure.

The progressive screw pump is a positive displacement rotary pump. If the outlet is blocked, the pressure will gradually rise, potentially exceeding the predetermined value. This causes a sharp increase in the motor load, and the load on related transmission components may also exceed design limits. In severe cases, this can lead to motor burnout or broken transmission parts. To prevent pump damage, a bypass relief valve is usually installed at the outlet to stabilize the discharge pressure and ensure normal pump operation.

progressive screw pumps

Fourth, reasonable selection of pump speed.

The flow rate of the progressive screw pump has a linear relationship with its speed. Compared to low-speed pumps, high-speed pumps can increase flow and head, but power consumption increases significantly. High speed accelerates the wear between the rotor and stator, inevitably leading to premature pump failure. Furthermore, the stator and rotor of high-speed pumps are shorter and wear out more easily, thus shortening the pump's service life.

 

Using a gear reducer or variable speed drive to reduce the speed, keeping it within a reasonable range below 300 revolutions per minute, can extend the pump's service life several times compared to high-speed operation.

 

Of course, there are many other maintenance methods for progressive screw pumps, which requires us to be more attentive during daily use. Careful observation will contribute significantly to proper pump maintenance.

 

How should faults in progressive screw pumps be handled? This article will mainly introduce methods for troubleshooting progressive screw pumps.

1. Pump body vibrates violently or produces noise:

A. Causes:​ Pump not installed securely or installed too high; damage to the motor's ball bearings; bent pump shaft or misalignment (non-concentricity or non-parallelism) between the pump shaft and the motor shaft.

B. Solutions:​ Secure the pump properly or lower its installation height; replace the motor's ball bearings; straighten the bent pump shaft or correct the relative position between the pump and the motor.

2. Transmission shaft or motor bearings overheating:

A. Causes:​ Lack of lubricant or bearing failure.

B. Solutions:​ Add lubricant or replace the bearings.

3. Pump fails to deliver water:

Causes:​ Pump body and suction pipe not fully primed with water; dynamic water level below the pump strainer; cracked suction pipe, etc.

 

The sealing surface between the screw and the housing is a spatial curved surface. On this surface, there are non-sealing areas such as ab or de, which form many triangular notches (abc, def) with the screw grooves. These triangular notches form flow channels for the liquid, connecting the groove A of the driving screw to grooves B and C on the driven screw. Grooves B and C, in turn, spiral along their helices to the back side and connect with grooves D and E on the back, respectively. Because the sealing surface where grooves D and E connect with groove F (which belongs to another helix) also has triangular notches similar to a'b'c' on the front side, D, F, and E are also connected. Thus, grooves A-B-C-D-E-A form an "∞"-shaped sealed space (If single-start threads were used, the grooves would simply follow the screw axis and connect the suction and discharge ports, making sealing impossible). It's conceivable that many independent "∞"-shaped sealed spaces are formed along such a screw. The axial length occupied by each sealed space is exactly equal to the lead (t) of the screw. Therefore, to separate the suction and discharge ports, the length of the threaded section of the screw must be at least greater than one lead.

 

Chemical Injection Pump Purchase Guide

2025-12-05

Chemical injection pumps are a type of reciprocating pump widely used in oil and gas, water treatment, chemical, and pharmaceutical industries. They enable precise, continuous, or intermittent injection of small quantities of chemical agents. Improper selection may lead to reduced efficiency, equipment failure, or even safety issues.

 

1. Medium Characteristics

When selecting chemical injection pumps, factors such as the corrosiveness, viscosity, temperature, and solid particle content of the medium must be considered. These characteristics influence the pump's material selection, seal design, and internal structural durability. For instance, highly corrosive media require special alloys or coatings to enhance corrosion resistance. High-viscosity media demand pumps with greater delivery capacity and adaptability. Media containing solid particles necessitate attention to internal clearance design and wear resistance to prevent clogging or premature wear.

 

2. Chemical Compatibility

Chemical injection pumps come into direct contact with various chemical agents during operation, necessitating careful consideration of chemical compatibility issues. The composition and properties of different chemical agents vary significantly, potentially affecting the pump's materials by causing expansion, brittleness, or dissolution. If the pump material is incompatible with the chemical agent, it can shorten equipment lifespan and may lead to chemical contamination or process failure.

 

3. Performance Parameters

Performance parameters are a critical factor in selecting chemical injection pumps, directly determining equipment efficiency and applicability. First, it is essential to verify whether the pump's flow range meets process requirements, with flow adjustability and stability under varying conditions being paramount. Second, pressure parameters serve as core indicators. Select pump models based on actual system operating pressures to prevent pressure-related issues. Additionally, pump accuracy and repeatability are vital, particularly in scenarios requiring precise control of chemical injection volumes. Simultaneously, evaluate the equipment's operating speed, power consumption, and drive configuration according to specific requirements to ensure overall performance aligns with process demands.

 

4. Pump Head Types

The selection of pump head type is critical to the performance and service life of chemical injection pumps. Different pump head types exhibit significant variations in material composition, structural design, and sealing methods, which determine the pump's adaptability to specific media and operating conditions. Furthermore, the internal flow path design within the pump head influences the flow characteristics of the medium. For media containing solid particles or high viscosity, selecting an appropriate flow path geometry can reduce the risk of clogging and wear.

 

5. Safety Performance

The safety performance of chemical injection pumps is critical to ensuring stable equipment operation and personnel safety. When selecting pumps, focus on whether the design complies with safety standards and incorporates necessary protective features. Additionally, the pump's electrical components must meet explosion-proof requirements, which is particularly important when operating in flammable or explosive environments.

 

When selecting chemical injection pumps, in addition to the factors mentioned above, other considerations must also be taken into account. For instance, whether the installation space for the equipment is limited may influence the choice of pump dimensions and structural design. Elephant Machinery remains committed to providing the most professional and reliable injection pumps to customers worldwide. Whether you require a single pump or a complete pump station, we will strive to meet your needs!

Chemical Injection Pumps in Oil and Gas

2025-12-05

Chemical injection pumps are devices used to precisely inject chemical agents into the oil and gas production process, delivering chemical additives such as corrosion inhibitors, scale inhibitors, and defoamers in specific proportions. Designed for high precision and corrosion resistance, they withstand complex environments. In practical applications, they ensure stable chemical release to prevent pipeline blockages, equipment corrosion, and production efficiency declines, thereby safeguarding the smooth operation of the production system. These pumps play a critical role in oil and gas operations.

 

1. Enhancing Production Efficiency

Chemical injection pumps enable precise control over chemical dosage, effectively minimizing production interruptions caused by equipment failures or process instability. Their high-precision operation ensures optimal chemical additive usage, preventing resource wastage and unnecessary costs. Furthermore, the stable release of chemicals optimizes various production stages—such as reducing pipeline sediment buildup, enhancing fluid transmission efficiency, and shortening overall operational cycles. This high-efficiency model not only boosts output but also provides operational teams with greater flexibility to adapt to varying production demands and unexpected situations.

 

2. Extending Equipment Lifespan

Chemical injection pumps continuously deliver corrosion inhibitors, scale inhibitors, and other chemicals during oil and gas operations, significantly slowing equipment wear and aging. These chemical additives form protective layers that isolate equipment surfaces from corrosive media, reducing oxidation and erosion risks. Additionally, their precise control capabilities prevent equipment damage caused by improper injection volumes, enhancing operational reliability. Consequently, critical components like pipelines, valves, and storage tanks maintain optimal performance for extended periods, reducing maintenance or replacement needs and substantially extending equipment service life.

 

 

3. Ensuring Operational Safety

Chemical injection pumps play an irreplaceable role in enhancing safety during oil and gas operations. By continuously injecting appropriate chemical agents, they suppress the accumulation of flammable and explosive gases, reducing fire and explosion risks. The use of corrosion inhibitors and scale inhibitors minimizes leakage hazards caused by equipment corrosion or blockages, preventing harm to personnel and the environment. Furthermore, their stable operation ensures controllable production processes, lowering the probability of safety incidents caused by sudden failures and providing a reliable operating environment for workers. This comprehensive safety assurance enables oil and gas operations to proceed under stringent safety conditions.  

 

4. Optimizing Resource Utilization

Chemical injection pumps enhance resource efficiency in oil and gas operations by precisely managing chemical agents. Their accurate injection capability maximizes the effectiveness of chemical additives while preventing overuse and waste. For instance, when treating water resources, they enable on-demand, precise addition of water treatment agents, reducing losses and improving water quality outcomes. Furthermore, optimizing chemical ratios and injection timing enables efficient energy utilization and reduced consumption. This refined management approach lowers costs, supports sustainable resource use, and drives the green transformation of the oil and gas industry.

 

5. Environmental Protection Benefits

Chemical injection pumps play a significant role in environmental protection during oil and gas operations. They precisely inject environmentally friendly chemicals, reducing harmful emissions and minimizing ecological impacts on surrounding areas. For instance, when treating wastewater, neutralizing agents or purifying agents can be accurately added to lower pollutant levels and ensure water quality meets standards. Additionally, their application helps control greenhouse gas emissions, optimize reaction processes, and reduce byproducts. Moreover, the equipment's efficient operation prevents soil and water contamination caused by chemical leaks or overuse, providing environmental safeguards and supporting the industry's sustainable development.

 

 

Elephant Machinery previously collaborated on a skid-mounted DS-70 chemical liquid injection pump skid designed for conveying xylene and hydrochloric acid at a flow rate of 42-50 gallons per minute, operating at 1500 PSI under intermittent duty cycles. This pump skid received high acclaim from the client. During actual operation, it precisely controls chemical injection volumes, ensuring stable and efficient production processes. Its corrosion resistance and durability have been rigorously tested under demanding conditions, significantly reducing maintenance frequency and downtime. The skid-mounted design facilitates easier installation and relocation, saving customers substantial time and costs. This successful case demonstrates the reliability and adaptability of chemical injection pumps in complex industrial environments, providing valuable reference for similar scenarios.Elephant Machinery also offers water injection pumps, polymer injection pumps, and CO2 injection pumps. Should you have any requirements in this area, please feel free to contact us anytime!

Elephant Machinery Makes Successful Debut at ADIPEC

2025-12-05

The 42nd Abu Dhabi International Petroleum Exhibition concluded successfully, with Elephant Machinery making its debut at ADIPEC and garnering global attention.

 

         

 

On November 6, the 42nd Abu Dhabi International Petroleum Exhibition and Conference (ADIPEC) concluded at the National Exhibition Center in Abu Dhabi, United Arab Emirates. As one of the core enterprises in Jianhu County's inaugural group participation, Elephant Machinery achieved a perfect debut at the 2025 Abu Dhabi International Petroleum Exhibition.

 

         

 

At this exhibition, Elephant Machinery showcased its latest technologies and products, drawing the attention of numerous visitors. The booth attracted a steady stream of attendees, with industry experts and clients from around the world expressing keen interest in the company's innovative achievements. Through live demonstrations and detailed explanations, Elephant Machinery successfully conveyed its expertise and leading position in the petroleum equipment sector. This debut not only enhanced brand recognition but also laid a solid foundation for future international collaborations.

 

 

The participating companies at this exhibition span the entire upstream, midstream, and downstream oil and gas drilling and production chain. Among them, Elephant Machinery emerged as a focal point with its convenient, reliable, efficient, and intelligent reciprocating pump products and integrated solutions. The company attracted major national oil companies, EPC contractors, and leading reciprocating pump manufacturers like NOV to engage in discussions on-site, resulting in preliminary cooperation agreements with multiple clients.

 

 

“Building a world-class reciprocating pump brand remains our unwavering vision.” Moving forward, Elephant Machinery will continue to increase R&D investment, iteratively optimize our reciprocating pump products, and deliver superior integrated solutions that create tangible value for our customers' operations, propelling the Elephant Machinery brand onto the global stage.

How to choose a pressure test pump

2025-12-05

The pressure test pump serves as a tool for inspecting and calibrating pressure equipment, with its core function being to ensure the stability and safety of devices under varying pressure conditions. Selecting an appropriate pressure test pump requires comprehensive consideration of factors such as the pressure range of the test subject, the type of medium, and the operating environment. Additionally, attention must be paid to the equipment's precision requirements and ease of operation to guarantee reliable test results and enhance work efficiency.

 

1. Pressure Range

When selecting a pressure test pump, the primary consideration is the pressure range. Different equipment has vastly different pressure requirements, so it is essential to clearly define the operating pressure range of the test subject. A test pump with an insufficient pressure range cannot meet the testing needs of high-pressure equipment; conversely, an excessively large range may compromise accuracy or lead to resource wastage. Additionally, attention must be paid to the maximum pressure the test pump can withstand to avoid safety hazards caused by pressure surges.

 

2. Medium Type

When considering medium type, clearly define the properties of the liquid or gas involved in the test subject. Different media may impose specific requirements on the material and sealing integrity of the test pump. For instance, corrosive media necessitate corrosion-resistant materials to ensure long-term stable operation. Characteristics such as viscosity, temperature, and the presence of particulate matter also influence test pump selection and must be matched to the specific application.

 

3. Environmental Factors

Environmental factors such as temperature, humidity, and vibration can impact the performance of pressure test pumps. In high- or low-temperature environments, select equipment suitable for the corresponding temperature range to ensure normal operation. During high humidity, consider the device's moisture resistance to prevent internal components from becoming damp and damaged. When the test site experiences significant vibration, choose a vibration-resistant test pump to prevent measurement inaccuracies or equipment failure.

 

4. Accuracy Requirements

When selecting a pressure test pump, accuracy requirements are a critical factor. High precision equipment delivers reliable data and is suitable for scenarios demanding strict control over pressure variations. To meet accuracy demands, ensure the equipment's stability and repeatability to avoid misjudgments or additional calibrations caused by data fluctuations.

 

5. Portability

Portability is an essential consideration when selecting pressure test pumps. In scenarios requiring frequent relocation or use across multiple sites, the device's weight, size, and ease of transport directly impact operational efficiency. Lightweight test pumps reduce operator burden, while compact designs facilitate storage and transportation.

 

 

Elephant Machinery pressure test pumps are typically plunger pumps, designed with thorough consideration of actual user requirements. We also provide customized reciprocating pump solutions for our clients. Should you have any pressure testing or high pressure pump needs, feel free to contact us anytime!

Maintenance for Reciprocating Pumps During Cold Seasons

2025-12-05

Maintenance of reciprocating pumps during cold seasons is crucial, primarily to prevent freezing and ensure normal operation in low-temperature environments, thereby avoiding failures and damage caused by cold weather. Specific measures include:

 

1. Thoroughly inspect whether the insulation measures applied to the pump body and piping are fully adequate. Conduct a comprehensive and meticulous inspection of all aspects, including insulation coverage and sealing integrity. If deficiencies are identified during the inspection, promptly add insulation layers or install heating cables as necessary. Adding insulation layers further enhances thermal insulation, reducing heat loss; installing heating cables actively provides heat to the pump body and piping, effectively preventing the freezing of liquids within the pipes.

 

2. During the period when the equipment is shut down, all residual liquid remaining inside the pump chamber and pipelines must be completely drained. The primary purpose of this is to prevent these residual liquids from freezing in low-temperature environments. Once frozen, liquids expand, and the force generated by this expansion could potentially cause the equipment to rupture.

 

 

3. According to a pre-set fixed cycle, the pump equipment is activated for brief operational runs. During pump operation, the relative motion between its internal mechanical components—that is, mechanical movement—generates a certain amount of heat. This heat produced by mechanical motion is utilized to maintain the pump's internal temperature at a relatively stable and suitable level. The purpose of this is to effectively prevent pump components from becoming stiff due to low temperatures or other factors, ensuring the pump can continue to operate normally.  

 

4. In relevant application scenarios, we can use antifreeze to replace conventional working fluids. Particularly under extreme low-temperature conditions, conventional working fluids may face the risk of solidification. Using antifreeze effectively prevents this from occurring, ensuring the fluid remains liquid and maintaining the normal operation of the entire system.

 

5. For critical components within the equipment—such as seals, valves, and piston rods that play vital roles—meticulous lubrication maintenance is essential. The primary purpose of lubricating these key components is to prevent material hardening under low-temperature conditions and to mitigate wear caused by increased friction between parts due to cold temperatures.

 

6. To ensure stable equipment operation and safe, orderly production, routine inspection efforts must be strengthened. During inspections, focus on the operational status of instruments such as pressure gauges and flow meters, as they provide real-time feedback on critical system parameters and are vital to normal system functioning. Inspection personnel must meticulously observe instrument readings and operational conditions with a professional mindset. Should any anomalies be detected—such as fluctuating display data or abnormal pointer movements—detailed records must be made immediately and prompt corrective action taken to prevent issues from escalating and impacting system performance.

 

Warning: If the equipment freezes, never use open flames to thaw it, as this may damage the pump body and pipes. Applying direct heat causes localized temperature spikes, leading to uneven heating of the pump or pipe materials. This can result in deformation, cracking, or even leaks, posing serious safety hazards. Instead, use gradual heating methods such as pouring warm water over the frozen area or applying uniform heat with a hot air device.

 

By following the above methods, you can significantly reduce the likelihood of reciprocating pumps malfunctioning during cold seasons, ensuring their smooth and safe operation. For any further questions regarding reciprocating pumps, feel free to contact the Elephant Machinery team at any time. We will provide the best service and solutions.

What is a steel dephosphorization pump?

2025-12-05

The steel dephosphorization pump is a specialized device used in the metallurgical industry to remove impurities and contaminants. It employs high pressure water streams or other media to thoroughly clean scale, impurities, and other deposits adhering to metal surfaces, thereby enhancing the quality and performance of metallic materials. Essentially, it functions as a high pressure pump. Typically featuring robust pressure output capabilities and corrosion resistance, this pump operates reliably in harsh working environments. Its design is compact and operation straightforward, making it suitable for metallurgical production processes of all scales.

 

1. Function

The primary function of the steel dephosphorization pump lies in its highly efficient removal capability. It precisely eliminates oxide layers and impurities from metal surfaces using high pressure water jets, ensuring higher purity of metal materials for subsequent processing. Additionally, this equipment significantly boosts production efficiency while reducing manual cleaning time and costs. In practical applications, it handles not only single-type metal materials but also adapts to diverse cleaning demands for complex materials, providing a flexible and reliable solution for the metallurgical industry. Its stable performance and durability further ensure continuous production line operation, minimizing downtime risks caused by equipment failures.

 

2. Working Principle

The steel dephosphorization pump achieves high pressure liquid delivery through the reciprocating motion of a plunger. When the plunger moves forward, liquid is drawn into the pump chamber, creating a low-pressure zone. Subsequently, the plunger retracts, compressing the liquid and delivering it through high pressure piping to the nozzle. This cyclical motion enables the pump to continuously output a stable high-pressure water stream, meeting the demand for removing impurities from metal surfaces. To ensure operational efficiency and durability, the pump body is typically constructed from high strength materials and equipped with precision sealing devices to prevent leakage and wear. Furthermore, its internal structure is optimized to effectively reduce vibration and noise during operation, enhancing overall comfort and safety during use.

 

3. Features

(1) Its high pressure output capability is exceptionally outstanding, generating sufficient pressure to thoroughly remove stubborn oxide layers and impurities from metal surfaces, ensuring cleaning results meet high standards.

(2) Key components are manufactured using corrosion-resistant materials, significantly extending service life and maintaining stable performance even in highly acidic or alkaline environments.

(3) The steel dephosphorization pump prioritizes operational convenience with an intuitive user interface and simplified maintenance, substantially lowering the learning curve and reducing long-term upkeep costs.

(4) Its compact structural design not only saves installation space but also enhances flexibility, facilitating rapid deployment and adjustment across diverse production scenarios.

These features collectively form the core competitiveness of the steel dephosphorization pump, meeting the modern metallurgical industry's demand for efficient, reliable cleaning equipment.

 

Steel dephosphorization pump = High pressure water descaling pump, which generates a high pressure water jet akin to a high pressure water jet cutter, precisely and efficiently removing surface “contaminants” (iron oxide scale and phosphorus-rich layers) from steel billets. Elephant Machinery provides top-tier steel dephosphorization pumps to global customers. Upholding the principle that “product reigns supreme,” we are committed to manufacturing convenient, reliable, efficient, and intelligent reciprocating pump products for clients across all industries.

What is the function of a boiler feed pump?

2025-12-05

Boiler feed pumps are critical equipment within boiler systems. Through the reciprocating motion of pistons or plungers, they pressurize water and deliver it to the boiler, maintaining stable water volume and pressure inside the boiler. These pumps are typically suited for high pressure, low flow applications, offering precise flow control and making them ideal for scenarios requiring stable water supply. Their compact design ensures reliable operation and high-efficiency performance even in harsh working environments. Additionally, their reciprocating design eliminates the need for pre-filling during startup, making operation more convenient.

 

1. Maintaining Boiler Water Level

The boiler feed pump ensures the water volume within the boiler system remains at an optimal level, preventing equipment damage or operational interruptions caused by water shortages. By continuously supplying water, the boiler feed pump effectively mitigates safety hazards arising from water level fluctuations while enhancing the overall stability of the system.

 

 

2. Stabilizing Boiler Pressure

By supplying pressurized water, it maintains internal pressure equilibrium within the boiler, ensuring efficient and safe operation. Through precise flow and pressure control, the boiler feed pump effectively addresses pressure fluctuations caused by load variations. Its high-efficiency pressurization capability ensures internal pressure consistently remains within the set range, preventing abnormal operation due to excessive or insufficient pressure.

 

3. Maintaining Flow Stability

In applications requiring precise flow control, boiler feed pumps deliver stable water output to meet diverse process demands. Through their precision engineering and consistent performance, these pumps ensure continuous, stable flow output across complex operating conditions. Whether responding to sudden load changes or internal pressure fluctuations, they rapidly adjust to maintain water supply flow that consistently meets specifications.

 

 

4. Reliability

Its compact structural design and dependable operational performance make it an ideal choice for high pressure, low flow scenarios, particularly suited for industrial applications demanding high water supply stability. Manufactured from premium materials, the boiler feed pump exhibits outstanding corrosion resistance and wear resistance, ensuring stable long-term operation in harsh environments. Its critical components undergo precision machining and rigorous testing to guarantee exceptional performance under high-pressure conditions.

 

5. Enhanced Efficiency

The reciprocating design not only improves operational convenience but also reduces pre-startup preparation, boosting overall work efficiency. It demonstrates outstanding energy conversion efficiency during operation, effectively lowering energy consumption. Its precise flow control capability minimizes water and energy waste, further optimizing system operating costs.

 

 

Boiler feed pumps operate stably under high pressure conditions, meeting high-load demands without additional energy consumption to provide efficient water supply solutions for boiler systems. Their compact design saves installation space, reduces maintenance frequency, and enhances equipment utilization efficiency, serving as a crucial component for improving the overall efficiency of industrial boiler systems. Elephant Machinery specializes in reciprocating pumps, offering both plunger pump and piston pump configurations. Through optimized design and manufacturing processes, our pumps achieve industry-leading performance and durability, delivering stable output in high temperature, high pressure environments to meet diverse industrial requirements. Custom solutions for special operating conditions enhance product adaptability and competitiveness. Our team provides professional technical support and comprehensive after-sales service, ensuring all-around customer assurance. This commitment positions our products as technologically advanced and our services as trusted partners. 

9 Essential Safety Points to Understand Before Using High-Temperature Magnetic Drive Pumps

2025-12-03

 

High-temperature magnetic drive pumps are compact, aesthetically pleasing, small in size, and feature stable, user-friendly operation with low noise levels. They are widely used in chemical, pharmaceutical, petroleum, electroplating, food, film processing, scientific research institutions, defense industries, and other sectors for pumping acids, alkaline solutions, oils, rare and valuable liquids, toxic liquids, volatile liquids, and in circulating water equipment, as well as for supporting high-speed machinery. They are particularly suitable for liquids that are prone to leakage, evaporation, combustion, or explosion. It is best to choose an explosion-proof motor for such pumps.

Advantages of High-Temperature Magnetic Drive Pumps:

1. No need to install a foot valve or prime the pump.

2. The pump shaft is changed from dynamic sealing to enclosed static sealing, completely avoiding media leakage.

3. No independent lubrication or cooling water is required, reducing energy consumption.

4. Power transmission is changed from coupling drive to synchronous dragging, eliminating contact and friction. This results in low power consumption, high efficiency, and provides damping and vibration reduction, minimizing the impact of motor vibration on the pump and pump cavitation vibration on the motor.

5. In case of overload, the inner and outer magnetic rotors slip relative to each other, protecting the motor and pump.

6. If the driven component of the magnetic drive operates under overload conditions or the rotor jams, the driving and driven components of the magnetic drive will automatically slip, protecting the pump. Under these conditions, the permanent magnets in the magnetic drive will experience eddy current losses and magnetic losses due to the alternating magnetic field of the driving rotor, causing the temperature of the permanent magnets to rise and leading to the failure of the magnetic drive slip.

 

High-temperature magnetic drive pumps

 

Precautions for Using High-Temperature Magnetic Drive Pumps:

1. Prevent Particle Entry

(1) Do not allow ferromagnetic impurities or particles to enter the magnetic drive or the bearing friction pair.

(2) After transporting media prone to crystallization or sedimentation, flush promptly (fill the pump cavity with clean water after stopping the pump, run for 1 minute, then drain completely) to ensure the service life of the sliding bearings.

(3) When pumping media containing solid particles, install a filter at the pump inlet.

 

2. Prevent Demagnetization

(1) The magnetic torque must not be designed too small.

(2) Operate within the specified temperature conditions; strictly avoid exceeding the maximum allowable media temperature. A platinum resistance temperature sensor can be installed on the outer surface of the isolation sleeve to monitor the temperature rise in the gap area, enabling an alarm or shutdown if the temperature limit is exceeded.

 

3. Prevent Dry Running

(1) Strictly prohibit dry running (operating without liquid).

(2) Strictly avoid running the pump dry or allowing the media to be completely drained (cavitation).

(3) Do not operate the pump continuously for more than 2 minutes with the discharge valve closed, to prevent overheating and failure of the magnetic drive.

 

4. Not for Use in Pressurized Systems:

Due to the existence of certain clearances in the pump cavity and the use of "static bearings," this series of pumps must absolutely not be used in pressurized systems (neither positive pressure nor vacuum/negative pressure is acceptable).

 

5. Timely Cleaning:​

For media that are prone to sedimentation or crystallization, clean the pump promptly after use and drain any residual liquid from the pump.

 

6. Regular Inspection:​

After 1000 hours of normal operation, disassemble and inspect the wear of the bearings and the end face dynamic ring. Replace any worn-out vulnerable parts that are no longer suitable for use.

magnetic drive pumps

 

7. Inlet Filtration:​

If the pumped medium contains solid particles, install a strainer at the pump inlet. If it contains ferromagnetic particles, a magnetic filter is required.

 

8. Operating Environment:​

The ambient temperature during pump operation should be less than 40°C, and the motor temperature rise should not exceed 75°C.

 

9. Media and Temperature Limits:​

The pumped medium and its temperature must be within the allowable range of the pump materials. For engineering plastic pumps, the temperature should be <60°C; for metal pumps, <100°C. The suction pressure should not exceed 0.2MPa, the maximum working pressure is 1.6MPa, for liquids with a density not greater than 1600 kg/m³ and a viscosity not greater than 30 x 10⁻⁶ m²/s, and which do not contain hard particles or fibers.

High-temperature magnetic drive pumps replace dynamic seals with static seals, making the pump's wetted parts fully enclosed. This solves the unavoidable running, dripping, and leaking issues associated with the mechanical seals of other pumps. Manufactured using highly corrosion-resistant materials such as engineering plastics, alumina ceramics, and stainless steel, these pumps offer excellent corrosion resistance and ensure the pumped media remains uncontaminated.

Analysis and Troubleshooting of Seven Common Failures in Stainless Steel Submersible Pumps

2025-12-03

 

Stainless steel submersible pumps are widely used in drainage applications across industries such as pharmaceuticals, environmental protection, food, chemical, and power due to their characteristics of corrosion resistance, hygiene, energy efficiency, environmental friendliness, non-clogging, high flow rate, and strong passage capability. Anhui Shengshi Datang will study together with everyone.

I. Common Causes and Solutions for Insufficient Flow or No Water Output in Stainless Steel Submersible Pumps:

1. The installation height of the pump is too high, resulting in insufficient impeller immersion depth and reduced water output. Control the allowable deviation of the installation elevation and avoid arbitrary adjustments.

2. The pump rotates in the reverse direction. Before trial operation, run the motor without load to ensure the rotation direction matches the pump. If this occurs during operation, check whether the power phase sequence has changed.

3. The outlet valve cannot open. Inspect the valve and perform regular maintenance.

4. The outlet pipeline is blocked, or the impeller is clogged. Clear blockages in the pipeline and impeller, and regularly remove debris from the reservoir.

5. The lower wear ring of the pump is severely worn or blocked by debris. Clean the debris or replace the wear ring.

6. The density or viscosity of the pumped liquid is too high. Identify the cause of the change in liquid properties and address it.

7. The impeller is detached or damaged. Reinforce or replace the impeller.

8. When multiple pumps share a common discharge pipeline, a check valve is not installed or the check valve is not sealing properly. Install or replace the check valve after inspection.

II. Causes of Abnormal Vibration and Instability During Operation of Stainless Steel Submersible Pumps:

1. The anchor bolts of the pump base are not tightened or have become loose. Tighten all anchor bolts evenly.

2. The outlet pipeline lacks independent support, causing pipeline vibration to affect the pump. Provide independent and stable support for the outlet pipeline, ensuring the pump’s outlet flange does not bear weight.

3. The impeller is unbalanced, damaged, or loosely installed. Repair or replace the impeller.

4. The upper or lower bearings of the pump are damaged. Replace the bearings.

III. Causes of Overcurrent, Motor Overload, or Overheating in Stainless Steel Submersible Pumps:

1. The operating voltage is too low or too high. Check the power supply voltage and adjust it.

2. There is friction between rotating and stationary parts inside the pump, or between the impeller and the seal ring. Identify the location of the friction and resolve the issue.

3. Low head and high flow cause a mismatch between the motor power and the pump characteristics. Adjust the valve to reduce the flow, ensuring the motor power matches the pump.

4. The pumped liquid has high density or viscosity. Investigate the cause of the change in liquid properties and adjust the pump’s operating conditions.

5. The bearings are damaged. Replace the bearings at both ends of the motor.

IV. Causes and Solutions for Low Insulation Resistance in Stainless Steel Submersible Pumps:

1. The cable ends were submerged during installation, or the power or signal cable was damaged, allowing water ingress. Replace the cable or signal wire, and dry the motor.

2. The mechanical seal is worn or not properly installed. Replace the upper and lower mechanical seals, and dry the motor.

3. The O-rings have aged and lost their function. Replace all sealing rings and dry the motor.

V. Causes and Solutions for Visible Water Leakage in Pipes or Flange Connections of Stainless Steel Submersible Pump Systems:

1. The pipeline itself has defects and was not pressure-tested.

2. The gasket connection at the flange joint was not properly handled.

3. The flange bolts were not tightened correctly. Repair or replace defective pipes, realign misaligned pipes, and ensure bolts are inserted and tightened freely. After installation, conduct a pressure and leakage test on the entire system. Replace components as necessary.

VI. Internal Leakage in Stainless Steel Submersible Pumps:

Leakage in the pump can lead to insulation failure, bearing damage, alarm activation, and forced shutdown. The main causes include failure of dynamic seals (mechanical seals) or static seals (cable inlet seals, O-rings), and damage to power or signal cables allowing water ingress. Alarms such as water immersion, leakage, or humidity may trigger shutdowns. Before installation, inspect the quality of all sealing components. Ensure proper contact between sealing surfaces during installation. Before operation, check the motor’s phase-to-phase and ground insulation resistance, and ensure all alarm sensors are functional. If leakage occurs during operation, replace all damaged seals and cables, and dry the motor. Do not reuse disassembled seals or cables.

VII. Reverse Rotation After Shutdown of Stainless Steel Submersible Pumps:

1. Reverse rotation occurs after the pump motor is powered off, mainly due to failure of the check valve or flap valve in the outlet pipeline.

2. Before installation, inspect the check valve for correct orientation and ensure the flap valve is centered and operates flexibly. Regularly inspect the check valve or flap valve during operation, and repair or replace damaged components with quality parts.

 

Tags